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Magnetic susceptibility of a semiconductor superlattice under 
parallel electric and magnetic fields 

V1 A Margulis 
Department of Physics, N P Ogarev Mordovian State University, Saransk 430000, Russia 

Received 11 July 1994. in find form 28 September 1994 

Abstract. We have calculated the magnetic susceptibility K of the degenerate electron gas 
in a semiconductor superlattice placed in porallel quantizing electric (E)  and magnetic ( H )  
fields directed along the superlattice growth axis. In this case the electrons have a purely 
discrete energy spectrum consisting of Landau and Wannier-Sfark levels. This leads to: (i) the 
dependence of the monotonic part of the diamagnetic susceptibility of the electron gns on the 
electric field: (ii) the rise of a new oscillation period of x 3s a function of H different from that 
of the de Haas-van Alphen oscillations; and (iii) the oscillatory behaviour of x as a function 
of E with a periodicity in J E .  It is shown that in weak magnetic fields the Wannier-Stark 
qumtization results in a step-like dependence of the paramagnetic susceptibility of the electtun 
gas on the electric fleld strength. 

1. Introduction 

In the past few years, there has been a steadily increasing interest in the electronic properties 
of semiconductor superlattices (SL) subjected to a strong electric field. This is accounted for 
by the fact that the SL is a unique object in studying a fundamental physical phenomenon- 
the quantization of electron motion in a periodic potential under an external electric field. 
This phenomenon was predicted by Wannier [l] in the early 1960s and since then has been 
a topic of considerable interest and controversy. But it has not been until very recently 
that essential progress ha.$ been made in understanding this problem owing to advances in 
microfabrication technology of semiconductor SL having artificial periodicity. The Wannier- 
Stark quantization in these structures has been intensively studied both theoretically 12-91 
and experimentally [9-181. The results obtained till now (for a review, see [19,20]) not only 
prove convincingly the existence of electric-field-induced localization of electron eigenstates 
and, connected with it, the WannierStark ladder spectrum in the semiconductor SL, they 
also show good potential for various applications in optoelectronics (see, for example, [211 
and references therein). 

With the application 6f a strohg magnetic field perpendicular to the SL layers and 
a strong electric field directed along the SL axis, the in-plane motion of the electrons 
is quantized into Landau levels, whereas the electron motion parallel to the growth axis 
is quantized into Wannier-Stark levels. This completely discrete energy spectrum leads 
to highly unusual optical properties of the SL, which have been studied in a number of 
theoretical and experimental works [22=243. 

One can expect that various thermodynamic properties of the electron gas in the SL 
will change essentially when electric and magnetic fields cause quantization of electron 
motion. In this connection it is of great interest to investigate the behaviour of the magnetic 
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susceptibiiity of the degenerate election gas, particularly the oscillations of magnetic 
susceptibility under milgnedc field Vatiation (the de Haas-Van Alphen effect); The latter 
ha$ long been widely used as a powerful tool for studying the election energy spectrum 
of bulk semiconductors and metals [is]. So fai there have been several theoretical [26- 
30j and experimental [3l-%j studies of this effect in iow=dimensionai election systems 
such as the inversion layer on the Si surface and the semiconductor Si GaAs=Al%aAs, 
in  the latter the de Haas-van Alphen osciiiations have been observed by making use of a 
SQUID (superconducting quahtum interference device) magnetometer with a Sensitivity of 

3 PI, sufficient to measure the magnetization in s i  consisting of 172 layers with 
total aiea of $3 em*. 

In this papei. we present a theory of the magnetic susceptibility x of the degenerate 
electton gas in a semiconductor SL in the presence of quahtizing electric (E)  and magnetic 
($I) fieids paraliel to the SL axis, As will be shown, a purely discrete electron energy 
spectium consisting of Landau and WannierGtark levels leads to the dependence of the 
monotonic pait of the diamagnetic susceptibility of the electron gas on the electric field and 
to the rise of a new oscillation period of jc as a function of H depending on the electric 
field strength and differing from that of the de Haas-van Alphen oscillations. It is also 
shown that, on vaiying the electric field, osciliations of jc with a periodicity in ,/E Will  be 
observed, theii period being proportionai to the magnitude g. In weak magnetic fields, as 
we Will see further, the existence of the WannierGStark iaddez levels manifests itself in a 
stepslike dependence of the paramagnetic susceptibility of the electron gas on the electiic 
field. This dependence aiises from the pecuiiaiities of the density of states Of the electrons 
in the SL in the presence of a quantizing electric field. 

. 

2, The energy Spectrum and the eigenstates of the electrons in the Si under pardel 
electric and mawetic fieids 

Let us consider &i ii=type semiconductor SL in which the Fermi level (0 is in the conduction 
band in the absence of external fields. We Bssume the SL period d to be considerably 
greater thah the lattice constant a of' the host ciystal. This permits the envetope-function 
method [ I 9 1  to be used for describing the SL electronic states. Within the framework of this 
approach the action of the potential With natural pehod n is taken into account by means 
of an effective-mass approximation, whereas the artificial potential of fhe SL is regarded as 
acting only upon the envelope function, which is dowfy vaiying at the scale of U. 

We take the SL growth axis as the z axis and choose the vector potential A of the 
uniform magnetic field in the Landau gauge Ai = A, = 0, A, = H x .  The dynamics of an 
BleCtrOh interacting With electric and magnetic fields parailei to the z axis is described by 
the Hamiltonian 

where p x ,  pr and p z  are operators of the electron momentum componenti ml and rill1 are 
the components of the effective mass of an electron perpendiculai and paraiiel to the SL 
akis, respectivelyi os = e H / m l c  is the cyclotron frequency and V ( z )  = V ( z  -!e d)  is the 
SL potential. 

It is easy to see that the variables in the Schrodinger equation with the Hamiltonian (1) 
can be separated. Indeed, the motion along the y axis is free, in the x direction We get 
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an eqatioh for the quantum harmonic oscillator with the equilibrium mitie at the point 
xo = =ai& (uH = e is the magnetic length), whereas in the z direction we get an 
equation desciibing the motion of Bn eledtion with effective m%s in11 in the electric field 
E 2nd the Si potential V ( 2 ) .  The iatter equation can be easiiy solved in a onezband model 
of tightly bound elections [34,$5j5 We make use of the results obhined in these papeis 
supposing the electrons oecupy (up to the Fermi level) only the ground (lowefj miniband 
with a width Ai We also assume that the following conditions &e satisfied 

__- 

W X Z > > 1  6JErj>1 AOH>>T A - . .  g >> ihfi  >> T (3 

where c L i ~  eEd/fi is fhe WannidrStaik frequency3 r is the election rela%ition t h e ,  T 
is the temperatun in energy uiiits and As is &he width of the first minigap. The latter 
of the conditions (2) permits Zener tunnelling and thermal excitations of elections from 
ground to higher minibtuids to be ignored, In this case the noim~liied eigenstates arid the 
corresponding eigenvalues of the framiltonian ( I )  can be presented in the foiiri 

Ea 5 E,, (n f 4)hOH ;1- mfiog .  (4)  

Here dl = (kj. n, in) denotes the set of quantum numbers determining the state of the 
election (a is the number of Landau levels, in enumerates fhe Wanniedtaik ladder lev&), 
L, is the normdiiation length in the j ,  dinrtion, Qn ( x )  is the oscillator wavefunction, J&) 
is a B e d  function of the first kind and of integer index i and rpl,(i =la) is the isolated 
Si q u a "  well eigenstate determined by the explicit form of the V ( z )  potentid; 

As is clearly seen from expression (3); the envelop& function, while o$cillxingi is 
rapidly dedieasing with the increase of fhe eiectric fieid sfrength, so that an electron in the 
inth Warinier=Stark idder level tiiins out to be spatially locdized around z = md with 
extension of the order A/RwE. Further, we confine ourselves to regadding a most realistic 
case when the parameter A/fiwE is not too large and, hence, only a comparatively 
number of Waiinier-Stalk levels can be airanged on ftie miniband width. 

Note that for an infiniE SL the quantum number in = O j  &I, &Z; >.. andi therefore, 
levels with negative energy appeai in die election specwum (4). Physidaily it is accounted 
foi by the fact that elections can move to infinity in the negative z direction and, hence, find 
themselves in a region of aibitrafily laige negative potentid energy. me real SL is bounded, 
of coursei and in order fo simulate the boundaiy at 2 = 0, preserving expression (4) for the 
energy spechum at the same time, we can m&e usei foilowing [%I, of an approach t&en 
from other situations in which infinitely negativezenergy fermion states appeai [36,37]. 
Namely, we postulate the existence of a filled-up infinite reservoir ('&ai: Sea') of negative 
energy leveis, Then, without loss of generality, we can regard the quantum number m in 
expression (4) as t&ing only positive integer values. An s i  having another boundary (in the 
positive i direction) will fmher be taken into acount indirectly in evaluating the election 
density of states bp multiplying it by the factor Li/d equal to tlie number of si quantum 
wells. It holds provided that eELi >> A l i i  which midmiies edge effects [2Zj38lZ The 
energy level system of the s i  electrons in this case is schematically depicted in figure l a  
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--- 
Figure 1. Schematic conduction-band edge profiles for the SL under quaotizing electric and 
mgnelic fields applied parallel to the SL axis. The full and broken lines in lhe quantum wells 
represent the Wannier-Smk and Landau levels, respectively. 

3. The thermodynamic potential 

We consider now the thermodynamic potential 0, the derivatives of which with respect to 
the magnetic field (at fixed values of the temperature T and of the chemical potential < of 
electrons) determine the magnetization and magnetic susceptibility of the electron gas. The 
expression for Q has the form 

where the magnitude < = @ + eEz  (p is the chemical potential proper) and is determined 
from the condition that the local electron density 

does not change on applying the electric and magnetic fields, e.g. from the condition 

ne(<)  = n:o’(<o) (7) 

where n:”(<o) is the electron density in the SL at E = H = 0. In formula (6), V, is 
the volume of the system and D(E) is the electron density of states, which, in the case of 
spectrum (41, has the form 

In an SL with one type of charge carrier, when the impurities are entirely ionized, condition 
(7) is obviously satisfied practically in the whole of the SL specimen, except for the narrow 
interface regions, the contribution of which to 0 is insignificant. 



btagnetic susceptibility of a semiconductor superlattice 649 

The evaluation of the thermodynamic potential with the help of formula (5) can be 
carried out using two methods: (i) by the standard method going back to the classical 
Landau paper (see [Z]) s and based on the Poisson summation formula for singling out 
the oscillating parts from thermodynamic quantities; or (ii) by the method suggested by 
Sondheimer and Wilson [39] (see also [40]) based on the theorem connecting density of 
states with the Laplace transformation of the statistical sum. In the case of the purely discrete 
spectrum of electrons that we consider here, the first of the above-mentioned methods leads 
to the representation of Q in the form of a double Fourier series, which is very complicated 
for analysis in the general case. Therefore, we make use of the second method. devoid 
of this deficiency. This method has one more advantage, which allows one to express the 
thermodynamic potential for the degenerate electron gas by means of the classical statistical 
sum Z(h), which, in the case of spectrum (4), is easy to calculate: 

(9) 

where h = P'.  Following the approach elaborated in [39,40] we represent fi in the form 

I 
Z ( A )  = (V~/ZZ~U; ) [ I  - exp(-fivloH)]-'[exp(h~wr) = I]=' exp(=fiuH/Z) 

where fO(col) is the Fermi-Dirac distribution function and the function z(&) is expressed 
by the Mellin integral 

y+im 

z(E-) = (zni)" /" Z(A.)h'iexp(A&a) dh. (11) 
y-iia 

Here the integration is carried out in the complex h plane along the straight line parallel to 
the imaginary axis and passing on the right of it (the constant y > 0). 

Taking into account (9), it is easy to see that the integrand in (11) has singularities 
at the points h = 0, A = h, =. iZZS/hOH (s = &I, k2,. . .) and h = 11 = i 2 Z l j h u ~  

). The point h = 0 is a pole 6f fourth order, while the character of 
the other singular points depends, generally speaking, on the arithmetic properties of the 
number uH/Os; namely, if the frequencies wH and OB are incommensurate (i.e. UH/UE is 
an irrational number), the integrand in (1 1 )  has poles of first order at the points h,v and hl, 
buf if the mentioned frequencies are commensurate (i.e. @%/WE is rational), the integrand 
in (1 1) has poles of second order at the points A,, or h~ (which are one and the same). 
Meanwhile, it is quite clear that the dependence of such a mcroscopic quantity as the 
magnetization of the electron gas on the strength of the fields must be continuous and, since 
any irrational number is well approximated by a rational fraction, we can confine ourselves, 
without loss of generality, to regarding the commensurate case when U H / U E  is rational. 
There is an additional argument in favour of this statement: namely, if Q is evaluated in 
a different way, based on the Landau method, the case of irrational U H / U E  is in no way 
singled out. 

The further evaluation of fi by means of formula (10) is carried out directly. Closing 
the integration contour in (11) by an infinite semicircle in the left half-plane (Reh < y ) .  we 
calculate the integral by making use of Cauchy's residue theorem. Substituting the result 
obtained in (10) and carrying out the integration over dec, we get the following expressions 
for the monotonic and oscillating parts of Q: 
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$here 

1 - x 2 / 6  x <c 1 
2rexp(-i) .x )> 1 

Ylj  (x) = x /  sinh x 2 

The expressions (12) and (19) contain &I unknown quantity (. To exclude it we m&e 
use of the equality 

d e ( ( )  ;v" (an/at)r.fi,E (16) 

and the condition (7) according to which the quantky f = p + eft should hot depend on 
any coodinat%= Taking into account that in the one-miniband approximation 

nLo'(fo) E n i 1 4 0 / % d h 2  (17) 

and substituting (12) in (16) (thus neglecting the oscillations of f under the Variation of the 
fields), we find the dependence of ( on electiid and magnetic fields: 

< ( j E W E / i )  (2kdE5r3)"2[1 ( h W E / 2 4 < 0 )  ( W ~ / # E ) ( f r W H / 2 4 f o ) ] " Z ~  (18) 

To avoid ambiguity, note that the abdve consideration is based on asgumption (2) and 
therefore the passage to the limit E =f 0 in formula (18) is inadmissible. 

Assuming further that the conditions 

hOE < f0 f i W E l 2 4 5 0  << 1 ( 0 H / W E ) ( h W ~ / 2 4 < 0 )  << i (19) 

are satisfied and using (12), (13) and (18). we finaily get 
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4. Magnetic susceptibilitj. 

Using the expressions (20) and (21) it is easy to find the different thermadynaiilic 
characteristics of the electron gas in the Si, such as entropy, electric moment and 
magnetization. It is the latter quantity that is the object of our interest here-more precisely, 
the magnetic susceptibility x ,  which is defined as the-derivative of the magnetiiafibn M 
with respect to the magnetic field 

x = (aM/aH)r, , ,E = =vd;1(a2n/aH2)i,tll,B. (22) 

Note that in evaluating the oscfilating part of ,y we must differentiate, as usual, only the 
most rapidly varying functions in  (Zt), namely, the sine and cosine in the terms bf the Sum. 
As a result we get €he following expressions for the monotonic ( f )  and oscillating (2) parts 
of the magnetic susceptibility: 

(23) 

where ~g = eh /2mlc  is the effective Bohr magneton. 
prom (23) it follows that the monotonic part of the diamagnetic susceptibiiity does not 

depend on temperature, but depends essentially on the electric field strenaghi decreasing with 
increase in the field by the law j o( E='/z. It should also be noted that according to (23) 
(and bearing in mind (ti)), the quantity 2 increases with electton density n F  propoitional 
to Jn$'), whereas the Landau diamagnetic susceptibility of the three-dimensional electron 
gas f~ CY n;I3 [25]. This difference arises fioni the effective Eduction of the diniensionali& 
of the eiecfron gas (its quasi.zero.dimension~ity) caused by the quantization of the electron 
motion in external fields, 

The Wannier-Stark quxntiiation also affects essentially the Pauli parmagnEtic 
niagnetikation, which is the result of the spin magnetic moment of the electrons. Let 
us calculate the corresponding magnetic susceptibility xp assuming t rd~ < 7, In this case 
we can neglect the effect of the magnetic field quantization of the electron orbits. 

With regatd to the electron spin 8 the energy spectium of elections in the SL Under a 
quantized electric field may be written as 

EmlZls = mhwE + p?/2ii71 - !LL~S. H (25) 

where p l  is the electron momentum in the x y  plane and I = 1(f), =I($)  is the spin 
quantum number. At H = 0 the~density of states of the elections with a fixed vaiue of s is 
given by 
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where [ X I  denotes the integral part of the number x .  
magnetization of the electron gas for z‘ >> ~ B H  we obtain 

Then, for the paramagnetic 

where 5 is the chemical potential at H = 0. The dependence of 5 on the electric field 
E is given by (18)- and therefore, at 50 >> EWE.  we get the following expression for the 
paramagnetic susceptibility: 

where the quantity (0  is determined by (17). 
From (28) it follows that on changing the electric field strength the quantity xp 

experiences step-like jumps corresponding to the alteration of the magnitude [(2(O/hoE)’/2] 
by unity. It occurs every time the value of (2ro/eEd)t/2 becomes an integer. As follows 
from (26),  such a dependence of x p ( E )  is the consequence of the step-like behaviour of the 
electron density of states as a function of energy in the SL in the presence of a quantizing 
electric field. 

However, the most interesting effects caused by the WannierStark quantization can be 
observed in the oscillating part of x. As seen from (24), the quantity 2 can oscillate with 
a change not only of the magnetic field strength, but of the electric field strength as well, 
the oscillatory variation of 2 as a function of N being characterized by the period 

A ( l / H )  = p~(2/eEd<o)‘ / ’  (29) 

depending on the electric field strength and differing from the period of the de Haas-van 
Alphen oscillations. Still more specific are the oscillations of 2 with a change of the electric 
field strength. As follows from (24) they mange evenly on the scale J E  with a period 
proportional to the magnitude H: 

A(E1/’) = 2p~ff/(2ed<o)’/~. (30) 

From the physical standpoint the rise of the above-mentioned oscillations is quite easy 
to interpret if we turn to figure 1 and consider how the filling of the electron states is being 
changed with the variation of the electric and magnetic fields. One should take into account 
the fact that in the presence of Wannier-Stark quantization the level of the chemical potential 
( in the SL, as seen from ( IQ ,  itself depends on the electric and magnetic field strengths. 
If condition (19) is satisfied, the magnetic field variation does not change essentially the 
quantity 5 ,  and assuming 50 >> EWE we have { = m. TheYLfore, when the electric 
field E is steady, the number of filled Landau levels is changed by unity with a magnetic 
field variation (more exactly, with the reverse field variation) A(l/H) by the amount 2 p ~ / < ,  
and thus we get to (29). 

On the contrary, if the magnetic field is kept steady and the electric field is varied, with 
the increase of E the. level of ( will also increase, but more slowly than the distance between 
the Wannierdtark levels, and one of the Landau levels will cross the z‘ level. Designating 
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by El and E2 the two values of the electric field for which the number of Landau levels 
(with energies less than or equal to 5 )  is equal to n and n + 1, respectively, we will have 

Subtracting the first equality from the second one we get the formula (30) for the oscillation 

The temperature dependence of the amplitudes of the oscillations is determined, as in the 
usual de Has-van Alphen effect, by the function Y 1 ( 2 n ~ l T j h ~ ~ f  because of the relative 
smallness of the second term in brackets in (24) (as seen from (14), (15) and from the latter 
condition in (19)) in the region of strong magnetic fields (2n2T << AUJH). In this region the 
exponential decrease of terms in the series (24) begins only from 1 > lo - AoH/T  and the 
amplitude of the oscillations is determined by the sum of a large number of cosine terms 
in (24) for which 1 - lo >> 1. The number of such terms is of the order of magnitude of 
the same lo. As a result we get the following estimation: 

period A(E1/2) = E,  112 - 

f " " /x  48(fiOJE/T)(<O/~mH). (31) 

Hence, provided the conditions (2)  and (19) are satisfied, the amplitude of the oscillating 
part of the magnetic susceptibility x is large compared with the monotonic one. 

However, one should bear in mind that electron scattering on different structural defects 
(such as impurities, interface roughnesses and well width fluctuations) can bring about a 
decrease of the amplitudes of the oscillations. A rigorous treatment of the effects of these 
processes on the behaviour of the oscillating part of x is a separate problem and is outside 
the scope of the present paper. But a qualitative estimation of the influence of scattering 
processes on f is easy to perform if we suppose, following Dingle [41]. that they do not 
change the systematics of the discrete energy levels, but merely lead to their broadening 
by a magnitude of the order of Air .  In this case the collisions of electrons with scatterers 
play the same role as temperature does, and the scattering can be taken into account by 
substituting the effective temperature Teff = T + h / r  for T in the function Q1(2?rZT/hw~) 
in (24). As a result, every Zth harmonic of the magnetic susceptibility acquires the multiplier 
exp(-2nl/wHr), known as the Dingle factor and describing the decrease of the oscillation 
amplitudes of x. With allowance for this factor, the exponential decrease of terms in 
the series (24) will begin from 1 = lo = min(f iw~/2n~T,  wHr/2n). At low temperature 
(T = 4.2 K) for parameters characteristic of the GaA-AIGaAs SL, A/r 5 nT,  and the 
decrease of the amplitude of the oscillations at the expense of scattering processes will 
not be very essential, so that the estimation (31) will remain valid at least as an order of 
magnitude. 

The graphs in figures 2 and 3 give a visual presentation of the amplitude and shape 
of the oscillation peaks of x and also illustrate clearly the dependence of the oscillation 
periods on the strength of the fields E and H; the graphs have been computed by using 
typical values of the parameters of a doped GaAs-AIGaAs SL: mL = O.Olmo (mo is the 
free-electron mass), d = 100 A, A = 50 meV and ne = 3 x l O I 7  ~ m - ~ .  

5. Conclusions 

In this paper we have shown that the equilibrium magnetic properties of the electron gas in 
a semiconductor SL change essentially by applying quantizing electric and magnetic fields 
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along the SL axis, The most important changes are the dependence af the monotonic part 
of diamagnetic susceptibility of the electron gas on the electric field strength and the step- 
like dependence of the paramagnetic susceptibility on E in the region of weak magnetic 
fields. An experimental investigation of these dependences would allow one to single out 
unambiguously the cgntributiqn Qf free carriers to the magnetic susceptibility of the SL, 
which, generally, also includes the susceptibilities of the host crystal atoms and of different 
structural defects. The results of the given measmemen@ could be used for determiping 
some characteristic parameters of the SL, such as the concentration of electrons and their 
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effective mass, It should be noted that such measuremen@ have the adv@@ge over purely 
electric ones in that the resu!ts obtained do not depend on the carrier scattering ~ : & n i s ~ $  

The Wannier-Stark q~antization also a&% the oscillating part of the magnetic 
susceptibility. The most essentia! effects (which are at the same time avdabk for 
observation) are the rise of a new oscil!ai!sn period of magnetic susceptibi1it)l as a function 
of the magnetic field different from that of the de Haaszvan Alphen oscillations and the 
oscil!atory behaviour of K as a function of the electric field haying a periodicity in dE3 A 
distinctivi feature of both types .. of osci!!ations is the possibility of regulating their periods 
by $hanging the magnitude of  the constant external fields applid to SL; tha ele&ic field 
in the first case and the magnetic field in the second. 

We k!ieve that the considered effects give new possibilities to investigate the 
e k t r ~ n  energy specuum in a semiconductor SL, suggesting a fundamental m&ed for 
the experimental study of the Wannier-stark quantization phenomenon, 
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